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Abstract
Closed form representations in terms of well known special functions are
deduced for the Mellin transform of a product of two Fox–Wright psi functions
1�1. An application concerned with the recent analysis of the critical behavior
of a variety of distinct physical systems is provided.
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1. Introduction

In [1] Diehl and Shpot reconsider the critical behavior of d-dimensional systems with an
n-component order parameter at (m, d, n)-Lifschitz points, where a wavevector instability
occurs in an m-dimensional subspace of IRd . In their analysis of previously published partly
contradictory ε-expansion results to the second order in ε = 4+m/2−d (0 � ε) they introduce
the scaling function

�(v) = v−(m−2)/2

(2π)d/2

∫ ∞

0
q2−εJm−2

2
(vq)Kd−m

2 −1(q
2) dq (1.1a)

its analogue

�(v) = 1

2

v−(m−2)/2

(2π)d/2

∫ ∞

0
q2−εJm−2

2
(vq)Kd−m

2 −2(q
2) dq (1.1b)

and two improper integrals whose integrands contain powers of these functions, viz,

Jp,λ(m, d) =
∫ ∞

0
vm+p−1�λ(v) dv (1.2a)

and

I1(m, d) =
∫ ∞

0
vm+1�2(v)�(v) dv (1.2b)

where the integers p,m, λ are such that p � 0, 1 � m � d − 1, λ = 2, 3.
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Diehl and Shpot have already noted that the scaling functions �(v) and �(v) defined by
equations (1.1) may be expressed essentially as differences whose members are proportional
to the generalized hypergeometric function 1F2[v4/64] (see [1, equations (A2) and (A3)]), i.e.
in the form

ξ 1F2[a; b, c; v4/64] − ηv2
1F2[a′; b′, c′; v4/64] (1.3)

where ξ, η, and the parameters of each 1F2 are functions of m and ε. However, if we substitute
the appropriate expression (1.3) for the scaling functions into either of equations (1.2), it is
evident that we essentially obtain linear combinations of Mellin transforms of products of
1F2[v4/64] and that each of these transforms diverges.

It shall be the purpose of the present investigation to put equations (1.1) into forms that
suggest further insight into the evaluation of the integrals given by equations (1.2). To this end
we note that v

1
2 (m−2)�(v) and v

1
2 (m−2)�(v) are proportional to specializations of

F(v) ≡
∫ ∞

0
qα−1Jµ(vq)Kω(q

2) dq (1.4)

which we shall evaluate in the next section.

2. Evaluation of F (v)

Upon making the transformation q �→ √
q in equation (1.4) and noting that

Jµ(z) = (z/2)µ

�(1 + µ)

∞∑
k=0

(−z2/4)k

(1 + µ)kk!

we obtain

F(v) = 1

2

(v/2)µ

�(1 + µ)

∞∑
k=0

(−v2/4)k

(1 + µ)kk!

∫ ∞

0
q

α+µ
2 +k−1Kω(q) dq (2.1)

where the order of summation and integration have been interchanged. The improper integral
in equation (2.1) may be viewed as a Mellin transform of the Macdonald function whose
evaluation is well known (see e.g. [4, vol 2, section 2.16.2, equation (2)]). Thus by using the
latter result and writing

1

(1 + µ)k
=

√
π

2µ+k

�(1 + µ)

�
( 1+µ+k

2

)
�
( 2+µ+k

2

)
(which is a consequence of the Legendre duplication formula) equation (2.1) gives

F(v) =
√
π

8
2

1
2 (α−3µ)vµ

∞∑
k=0

�
(
α+µ+2ω

4 + k
2

)
�
(
α+µ−2ω

4 + k
2

)
�
( 1+µ

2 + k
2

)
�
( 2+µ

2 + k
2

) (−v2/4)k

k!
(2.2)

where Re (α + µ) > 2|Reω| for convergence of the integrals in equations (1.4) and (2.1).
However, the series in the latter equation represents a specialization of the Fox–Wright psi

function 2�2[−v2/4] (see [3] for additional references) so that we have finally the following.

Lemma 1. For Re (α + µ) > 2|Re ω|∫ ∞

0
qα−1Jµ(vq)Kω(q

2) dq =
√
π

8
2

1
2 (α−3µ)vµ

2�2

[(
α+µ+2ω

4 , 1
2

)
,
(
α+µ−2ω

4 , 1
2

);( 1+µ
2 , 1

2

)
,
( 2+µ

2 , 1
2

); − v2

4

]
.

Furthermore, if the series in equation (2.2) is separated or decomposed into even and odd terms
in the index k, the latter psi function and integral may be written in terms of two 2F3[v4/64]
functions (cf [4, vol 2, section 2.16.22, equation (6)]).
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Now recalling that d = 4 + m/2 − ε we may apply lemma 1 to the scaling functions
defined by equations (1.1) thus obtaining for 0 � ε < 2

�(v) =
√
π2− 1

2 ε− 3
4 m

(2π)d/2 1�1

[(
1 − ε

2 ,
1
2

);(
1
2 + m

4 ,
1
2

); − v2

4

]
(2.3a)

and for 0 � ε < 1

�(v) =
√
π2− 1

2 ε− 3
4 m

2(2π)d/2 1�1

[(
1
2 − ε

2 ,
1
2

);(
m
4 ,

1
2

); − v2

4

]
. (2.3b)

Equation (2.3a) is also derived in [5, section 2].
As intimated above the psi functions in equations (2.3) are readily decomposed thus

yielding expressions of the form (1.3). However, the importance of equations (2.3) lies in
the fact that the Fox–Wright psi function p�q[(αp, µp); (βq, νq); z] (when it converges) is
proportional to a specialization of Meijer’s G-function provided that the parameters (µp) and
(νq) are positive rational numbers. The latter result is due to Boersma (1962) and may be found
in [3, section 5], where concomitant references are cited, and where 2π in each of the three
equations of [3, section 5] should be in parentheses. For an introduction to the Fox–Wright
psi function and Meijer’s G-function, see, for example, [6].

Thus we have immediately from [3, equation (5.1)] the result

1�1

[
(a, 1

2 );
(b, 1

2 );
− v2

4

]
= 1√

π
G

2,1
1,3

(
v4

64

∣∣∣∣ 1 − a

0, 1
2 , 1 − b

)
(2.4)

which when applied to equations (2.3) gives for 0 � ε < 2

�(v) = 2− 1
2 ε− 3

4 m

(2π)d/2
G

2,1
1,3

(
v4

64

∣∣∣∣
ε
2

0, 1
2 ,

1
2 − m

4

)
(2.5a)

and for 0 � ε < 1

�(v) = 2− 1
2 ε− 3

4 m

2(2π)d/2
G

2,1
1,3

(
v4

64

∣∣∣∣
1
2 + ε

2

0, 1
2 , 1 − m

4

)
. (2.5b)

Thus, for example, by using equations (2.3) Jp,λ(m, d) and I1(m, d) defined by
equations (1.2) may be written as specializations proportional to one of the Mellin transforms

I (s; x, y, z) ≡
∫ ∞

0
vs−1

1�1

[(
a, 1

2

);(
b, 1

2

); − x2v2

4

]
1�1

[(
c, 1

2

);(
e, 1

2

); − y2v2

4

]

×1�1

[(
f, 1

2

);(
g, 1

2

); − z2v2

4

]
dv (2.6a)

J (s; x, y) ≡
∫ ∞

0
vs−1

1�1

[(
a, 1

2

);(
b, 1

2

); − x2v2

4

]
1�1

[(
c, 1

2

);(
e, 1

2

); − y2v2

4

]
dv (2.6b)

where x, y, z �= 0, and Re (s) > 0 for convergence of both integrals at their lower limits.
In the next section we shall evaluate J (s; x, y) ≡ J (s) which is a Mellin transform

of a product of two Fox–Wright psi functions 1�1. Thus in section 4 we shall be able to
obtain a closed form representation for Jp,2(m, d) which reduces to the easily computable
specializations J0,2(m, d) and J2,2(m, d). Hopefully, the methods used in the analysis
of J (s; x, y) will provide some insight into the calculation of I (s; x, y, z) (and therefore
Jp,3(m, d) and I1(m, d) also) in terms of known special functions.
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3. Representations for J(s) and certain specializations

By using equation (2.4) we see that equation (2.6b) may be rewritten as

J (s) = 1

π

∫ ∞

0
vs−1G

2,1
1,3

(
x4v4

64

∣∣∣∣ 1 − a

0, 1
2 , 1 − b

)
G

2,1
1,3

(
y4v4

64

∣∣∣∣ 1 − c

0, 1
2 , 1 − e

)
dv.

Now making the transformation v �→ 2
√

2v1/4 and noting a basic property of the G-function
(see e.g. [2, property 2.1]) the latter yields

J (s) = 1

4π

2
3
2 s

(xy)
s−4

2

∫ ∞

0
G

2,1
1,3

(
vx4

∣∣∣∣∣
1
2 + s

8 − a

s
8 − 1

2 ,
s
8 ,

1
2 + s

8 − b

)

×G
2,1
1,3

(
vy4

∣∣∣∣∣
1
2 + s

8 − c

s
8 − 1

2 ,
s
8 ,

1
2 + s

8 − e

)
dv.

The latter integral is evaluated by employing [2, equation (3.10.11)] thus giving after some
simplification

J (s) = 2
3
2 s

4π
y−sG

3,3
4,4

(
x4

y4

∣∣∣∣∣ 1 − a, 1 − s
4 ,

1
2 − s

4 , e − s
4

0, 1
2 , c − s

4 , 1 − b

)
(3.1)

where for convergence of J (s) the parameters a and c are not zero, negative, or half negative
integers, |arg x| < π/4, |arg y| < π/4, and 0 < Re (s) < 4Re (a + c).

If we set c = a, e = b in equation (3.1), we obtain the following.

Corollary 1. For |arg x| < π/4, |arg y| < π/4, and 0 < Re (s) < 8Re (a)∫ ∞

0
vs−1

1�1

[(
a, 1

2

);(
b, 1

2

); − x2v2

4

]
1�1

[(
a, 1

2

);(
b, 1

2

); − y2v2

4

]
dv

= 2
3
2 s

4π
y−sG

3,3
4,4

(
x4

y4

∣∣∣∣∣ 1 − a, 1 − s
4 ,

1
2 − s

4 , b − s
4

0, 1
2 , a − s

4 , 1 − b

)
. (3.2)

Assuming arbitrary b note that obviously the parameter a may not be zero, a negative or half
negative integer as otherwise the psi functions 1�1 diverge.

Furthermore, now setting s = 4b − 2 and s = 4b, respectively, in equation (3.2) by
exploiting in each case the symmetry of the parameters of the G-function G

3,3
4,4(x

4/y4), the
latter reduces to a function of lower order (see e.g. [2, p 70] for order reduction properties of
the G-function) and we have the results below.

Corollary 2. For |arg x| < π/4, |arg y| < π/4∫ ∞

0
v4b−3

1�1

[(
a, 1

2

);(
b, 1

2

); − x2v2

4

]
1�1

[(
a, 1

2

);(
b, 1

2

); − y2v2

4

]
dv

= 26b

32π
(y2)1−2bG

2,2
2,2

(
x4

y4

∣∣∣∣ 1 − a, 3
2 − b

0, 1
2 + a − b

)
(3.3a)

where 1
2 < Re (b) < 2Re (a) + 1

2 ;∫ ∞

0
v4b−1

1�1

[(
a, 1

2

);(
b, 1

2

); − x2v2

4

]
1�1

[(
a, 1

2

);(
b, 1

2

); − y2v2

4

]
dv

= 26b

4π
(y2)−2bG

2,2
2,2

(
x4

y4

∣∣∣∣ 1 − a, 1
2 − b

1
2 , a − b

)
(3.3b)

where 0 < Re (b) < 2Re (a).
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Although equations (3.1)–(3.3) and similar type results may be considered elegant, they
are by no means immediately useful computationally, since the G-function is just an equivalent
notation for a certain contour integral. However, we shall prove lemma 2 below which will
enable us to write equations (3.3) in more useful forms.

Lemma 2. Suppose 0 < Re (1 + α1 − β2) < Re (2 + α1 + α2 − β1 − β2) and let

γ ≡ �(1 + α1 − β1)�(1 + α1 − β2)�(1 + α2 − β1)�(1 + α2 − β2)

�(2 + α1 + α2 − β1 − β2)
.

Then

G
2,2
2,2

(
z

∣∣∣∣ β1, β2

α1, α2

)
= γ zα1

2F1

[
1 + α1 − β2, 1 + α1 − β1;
2 + α1 + α2 − β1 − β2; 1 − z

]
(0 < z � 1) (3.4a)

= γ zβ2−1
2F1

[
1 + α1 − β2, 1 + α2 − β2;

2 + α1 + α2 − β1 − β2; 1 − 1

z

]
(z � 1) (3.4b)

and

G
2,2
2,2

(
1

∣∣∣∣ β1, β2

α1, α2

)
= γ. (3.4c)

In order to prove lemma 2 we employ a result of Mathai [2, theorem 2.9, p 109] that
represents Gp,p

p,p(z) in terms of a (p−1)-dimensional integral. Specialization of the latter with
p = 2 gives for 0 < z < ∞

G
2,2
2,2

(
z

∣∣∣∣ β1, β2

α1, α2

)
= �(1 + α1 − β1)�(1 + α2 − β2)z

β1−1

×
∫ ∞

0
tα1−β2(1 + t)β2−α2−1(1/z + t)β1−α1−1 dt (3.5)

where for convergence of the integral 0 < Re (1 + α1 − β2) < Re (2 + α1 + α2 − β1 − β2).
The integral in equation (3.5) is readily evaluated for 0 < z � 1 and for z � 1 by

using [4, vol 1, section 2.2.6, equation (24)] in two different obvious ways. Equation (3.4c)
follows by setting z = 1 in either equation (3.4a) or (3.4b) and noting that Gauss’s function
2F1 reduces to unity when its argument vanishes.

For conciseness we define

γ1 ≡ 26b

32π

�2(a)

�(2a)
�

(
b − 1

2

)
�

(
1

2
+ 2a − b

)
and

γ2 ≡ 26b

4π

�2( 1
2 + a)

�(1 + 2a)
�(1 + b)�(2a − b).

Lemma 2 may now be applied to equations (3.3) thus giving∫ ∞

0
v4b−3

1�1

[(
a, 1

2

);(
b, 1

2

); − x2v2

4

]
1�1

[(
a, 1

2

);(
b, 1

2

); − y2v2

4

]
dv

= γ1(y
2)1−2b

2F1

[
a, b − 1

2 ;
2a; 1 − x4

y4

]
(0 < x � y) (3.6a)

= γ1(x
2)1−2b

2F1

[
a, b − 1

2 ;
2a; 1 − y4

x4

]
(0 < y � x) (3.6b)
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where 1
2 < Re (b) < 2Re (a) + 1

2 and∫ ∞

0
v4b−1

1�1

[(
a, 1

2

);(
b, 1

2

); − x2v2

4

]
1�1

[(
a, 1

2

);(
b, 1

2

); − y2v2

4

]
dv

= γ2x
2

(y2)1+2b 2F1

[
1
2 + a, 1 + b;

1 + 2a; 1 − x4

y4

]
(0 < x � y) (3.7a)

= γ2y
2

(x2)1+2b 2F1

[
1
2 + a, 1 + b;

1 + 2a; 1 − y4

x4

]
(0 < y � x) (3.7b)

where 0 < Re (b) < 2Re (a).
Now setting x = y = 1 in equations (3.6) and (3.7) we deduce∫ ∞

0
v4b−3

(
1�1

[(
a, 1

2

);(
b, 1

2

); − v2

4

])2

dv = 26b

32π

�2(a)

�(2a)
�

(
b − 1

2

)
�

(
1

2
+ 2a − b

)
(3.8a)

where 1
2 < Re (b) < 2Re (a) + 1

2 and∫ ∞

0
v4b−1

(
1�1

[(
a, 1

2

);(
b, 1

2

); − v2

4

])2

dv = 26b

4π

�2( 1
2 + a)

�(1 + 2a)
�(1 + b)�(2a − b) (3.8b)

where 0 < Re (b) < 2Re (a).

4. Representations for Jp,2(m, d)

We are now ready to apply the results obtained heretofore to Jp,λ(m, d) for λ = 2. Combining
equations (1.2a) and (2.3a) gives

Jp,2(m, d) = π2−ε− 3
2 m

(2π)d

∫ ∞

0
vm+p−1

(
1�1

[(
1 − ε

2 ,
1
2

);(
1
2 + m

4 ,
1
2

); − v2

4

])2

dv (4.1)

where d = 4 + m/2 − ε and 0 � ε < 2. The integral in equation (4.1) may be evaluated
in terms of a G-function by setting in equation (3.2) x = y = 1, s = m + p, a = 1 − ε/2,
b = 1/2 + m/4 thus giving

Jp,2(m, d) = 2−ε+ 3
2 p

4(2π)d
G

3,3
4,4

(
1

∣∣∣∣∣
ε
2 , 1 − m

4 − p

4 ,
1
2 − m

4 − p

4 ,
1
2 − p

4

0, 1
2 , 1 − ε

2 − m
4 − p

4 ,
1
2 − m

4

)
(4.2)

wherem/4+p/4 < 2−ε. In addition, whenp = 0, 2 we may immediately apply, respectively,
equations (3.8a) and (3.8b) to the integral in equation (4.1) so that

J0,2(m, d) = 2−2−ε

(2π)d

�2(1 − ε
2 )

�(2 − ε)
�

(
m

4

)
�

(
2 − m

4
− ε

)
where m/4 < 2 − ε and

J2,2(m, d) = 21−ε

(2π)d

�2( 3
2 − ε

2 )

�(3 − ε)
�

(
3

2
+
m

4

)
�

(
3

2
− m

4
− ε

)
where m/4 < 3/2 − ε.

The penultimate result for J0,2(m, d) has previously been given by Diehl and Shpot whose
derivation for it is intimated in a footnote (see [1, equation (89) and footnote 36]). Moreover,
in a private communication Diehl has noted that the generalized quantity Jp,2(m, d) given by
equation (4.2) could play a role in calculations of the anomalous dimensions of subdominant
operators of fourth order in φ and second order in 0⊥ (see also [1, 5]).
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